Functional roles of Mg2+ binding sites in ion-dependent gating of a Mg2+ channel, MgtE, revealed by solution NMR

نویسندگان

  • Tatsuro Maruyama
  • Shunsuke Imai
  • Tsukasa Kusakizako
  • Motoyuki Hattori
  • Ryuichiro Ishitani
  • Osamu Nureki
  • Koichi Ito
  • Andrès D Maturana
  • Ichio Shimada
  • Masanori Osawa
چکیده

Magnesium ions (Mg2+) are divalent cations essential for various cellular functions. Mg2+ homeostasis is maintained through Mg2+ channels such as MgtE, a prokaryotic Mg2+ channel whose gating is regulated by intracellular Mg2+ levels. Our previous crystal structure of MgtE in the Mg2+-bound, closed state revealed the existence of seven crystallographically-independent Mg2+-binding sites, Mg1-Mg7. The role of Mg2+-binding to each site in channel closure remains unknown. Here, we investigated Mg2+-dependent changes in the structure and dynamics of MgtE using nuclear magnetic resonance spectroscopy. Mg2+-titration experiments, using wild-type and mutant forms of MgtE, revealed that the Mg2+ binding sites Mg1, Mg2, Mg3, and Mg6, exhibited cooperativity and a higher affinity for Mg2+, enabling the remaining Mg2+ binding sites, Mg4, Mg5, and Mg7, to play important roles in channel closure. This study revealed the role of each Mg2+-binding site in MgtE gating, underlying the mechanism of cellular Mg2+ homeostasis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The unique nature of mg2+ channels.

Considering the biological abundance and importance of Mg2+, there is a surprising lack of information regarding the proteins that transport Mg2+, the mechanisms by which they do so, and their physiological roles within the cell. The best characterized Mg2+ channel to date is the bacterial protein CorA, present in a wide range of bacterial species. The CorA homolog Mrs2 forms the mitochondrial ...

متن کامل

Mg2+-sensing mechanism of Mg2+ transporter MgtE probed by molecular dynamics study.

Proper regulation of the intracellular ion concentration is essential to maintain life and is achieved by ion transporters that transport their substrates across the membrane in a strictly regulated manner. MgtE is a Mg(2+) transporter that may function in the homeostasis of the intracellular Mg(2+) concentration. A recent crystallographic study revealed that its cytosolic domain undergoes a Mg...

متن کامل

Magnesium transporters: properties, regulation and structure.

The chemistry of Mg2+ is unique amongst biological cations, and the properties of Mg2+ transport systems reflect this chemistry. Prokaryotes carry three classes of Mg2+ transport systems: CorA, MgtA/B and MgtE. CorA and MgtE are widely distributed in both Eubacteria and Archaea, while the MgtA/B class is found primarily in the Eubacteria. Eukaryotic homologs of CorA, although clearly functional...

متن کامل

Exploring the structure and function of Thermotoga maritima CorA reveals the mechanism of gating and ion selectivity in Co2+/Mg2+ transport

The CorA family of divalent cation transporters utilizes Mg2+ and Co2+ as primary substrates. The molecular mechanism of its function, including ion selectivity and gating, has not been fully characterized. Recently we reported a new structure of a CorA homologue from Methanocaldococcus jannaschii, which provided novel structural details that offered the conception of a unique gating mechanism ...

متن کامل

Fluorescence Chemosensing of Mg2+ by Phenylhydrazone of a Difluorenylpiperidin-4-one

Magnesium is an abundant element in the environment. Magnesium ion sensing by fluorescence spectral method is of importance due to the need for the detection of the metal in the human body and the environment. In this paper, we report the Mg2+ ion sensing behavior of the phenylhydrazone derivative of a difluorenylpiperidin-4-one. The preparation method of this compound is simple. The compound s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2018